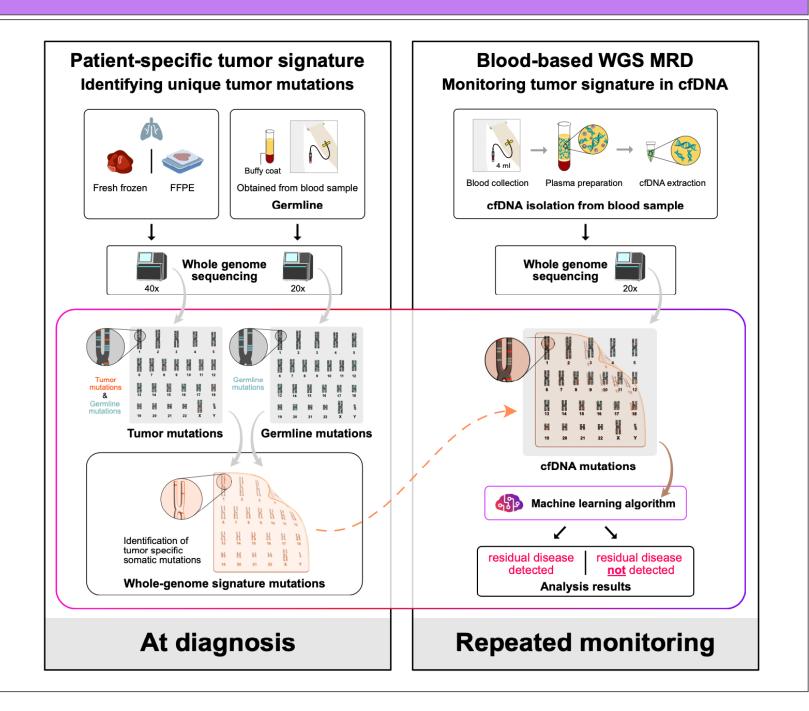
Whole genome cell-free tumor DNA mutational signatures from blood for early detection of recurrence of low stage lung adenocarcinoma

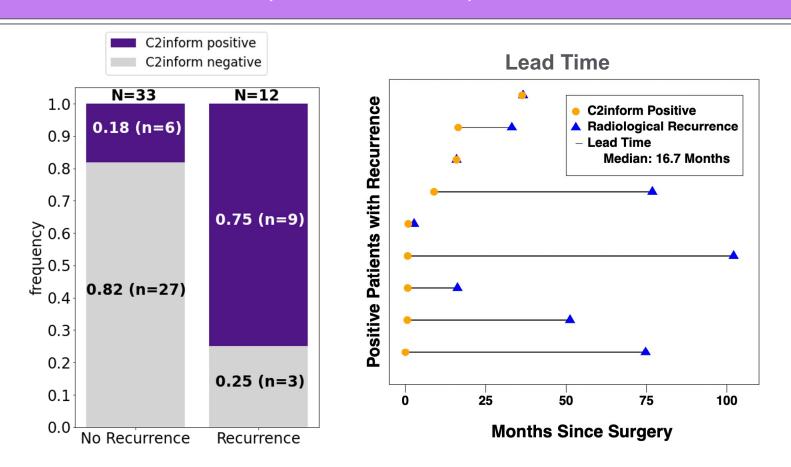

Ivy Tran¹, Alejandro Vargas¹, Reid Wilkins¹, Isabella Pizzillo¹, Kenneth Tokoro², Danielle Afterman³, Tomer Lauterman³, Maja Kuzman⁴, Santiago Gonzalez⁴, Dunja Glavas⁴, James Smadbeck⁴, Dillon Maloney⁴, Jurica Levatic⁴, Samuel Phillips⁴, Sunil Deochand⁴, Michael Yahalom³, Ryan Ptashkin⁴, Iman Tavassoly⁴, Zohar Donenhirsh³, Eric White⁴, Ravi Kandasamy⁴, Ury Alon³, Paz Polak⁴, Boris Oklander³, Asaf Zviran⁴, Matija Snuderl¹, Harvey I. Pass²

¹Department of Pathology, NYU Langone Health, New York, NY, USA, ²Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, USA, ³C2i Genomics LTD, Haifa, Israel, ⁴C2i Genomics Inc., New York, NY, USA

INTRODUCTION

Lung cancer remains the leading cause of cancerrelated deaths. Surgery is the best option for early
lung cancer, and the role of adjuvant therapy remains
controversial. Liquid biopsy offers a noninvasive
approach to monitor cancer burden. Targeted
sequencing of circulating cell-free tumor DNA
(ctDNA) in blood has shown success for diagnosis;
however, low tumor burden and dynamic evolution of
low stage disease is challenging for targeted panels.
We hypothesized that a whole genome sequencing
(WGS)-derived patient specific mutational signature
from matched tumor-normal samples can provide a
sensitive and specific approach for monitoring of lung
adenocarcinoma patients.

C2INFORM ASSAY

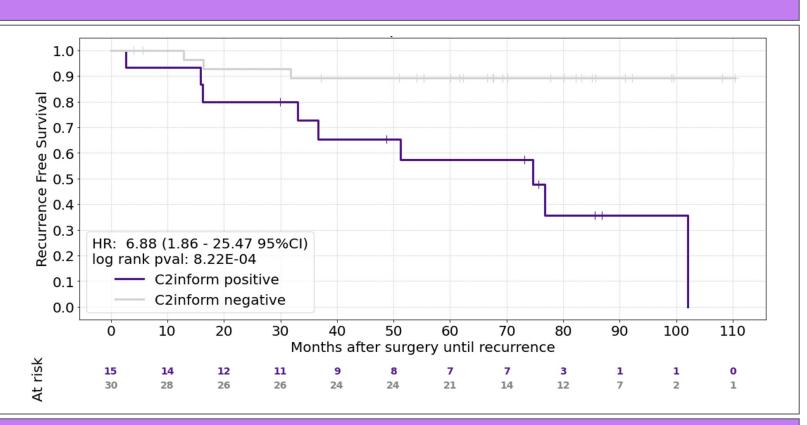

Corresponding Author: matija.snuderl@nyulangone.org

PATIENT CHARACTERISTICS

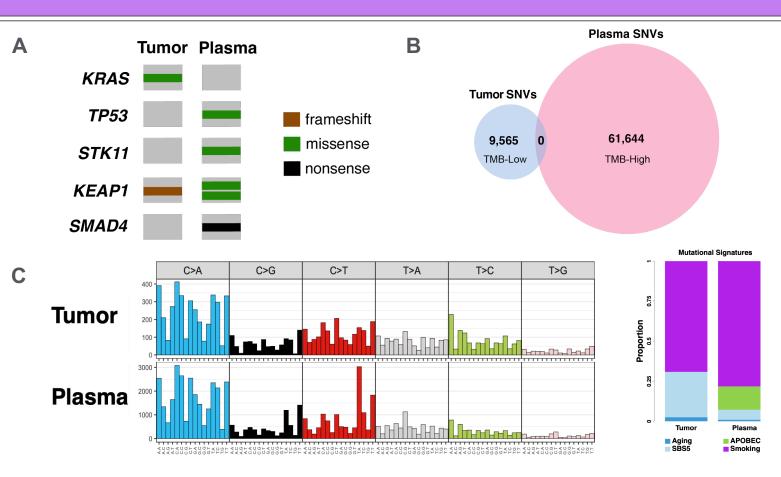
We successfully profiled 45 Stage 1 (44, 98%) or Stage 2 (1, 2%) lung adenocarcinomas with >5% tumor purity and <30% duplications rate. Of these, 33 patients showed no recurrence and 12 recurred. WGS of the ctDNA samples, derived from 1-2 mL plasma collected at the time of surgery and 3 to 18 surgical follow-ups, were tested using the C2inform assay.

	N (%)		N (%)
Age (median, range)	68 (46-88)	Stage	
Gender Female Male	31 (69) 14 (31)	IA IB II	42 (93) 2 (4) 1 (2)
Smoking Status Current or former Never Unknown	31 (69) 13 (29) 1(2)	EGFR positive	10 (22)
		Disease recurrence	12 (27)
		Alive at data cut-off	40 (89)

SENSITIVITY, SPECIFICITY, AND LEAD TIME



Tumor-specific signatures detected the presence of ctDNA in plasma with TF as low as 10⁻⁵. Recurrence prediction had sensitivity=0.75, specificity=0.82, PPV=0.6 and NPV=0.9. WGS ctDNA predicted recurrence with a median lead time of 16.7 months before clinical/imaging recurrence.


COHORT OVERVIEW

C2INFORM POSITIVE PREDICTS RECURRENCE

CASE STUDY OF SECOND PRIMARY

De novo calling of somatic mutations from cfDNA found (A) no overlap in driver alterations; (B) no overlap in SNVs and increase in mutation burden; (C) plasma specific APOBEC signature. Taken together this indicates the presence of a second primary.

CONCLUSIONS

Patient-specific WGS tumor signature enables specific and ultrasensitive tracking of minimal residual disease in plasma derived ctDNA from low stage lung adenocarcinoma patients. Molecularly positive status can be used to predict recurrence and identify patients with clinical low stage disease that may benefit from adjuvant therapy. WGS analysis of high tumor fraction plasma samples can also detect the presence of second primary tumors.

